Posts Tagged ‘programming’

The benchmarks in my last post had one thing in common: all communication was one sender to one receiver. It’s surprising how often this is sufficient, but sooner or later we are going to need a way to have multiple tasks sending to the same receiver. I’ve been experimenting with two ways of doing many senders to different receivers, and I now have some results to show.

The pipes library includes a select operation. This lets you listen on several receive endpoints simultaneously. Unfortunately, the single-use nature of endpoints makes select a little clunky to use. To help alleviate this, I added a port_set to the library. Port sets allow you to easily treat several receive endpoints as a unit. This allows send to still be very fast, but receive is a little bit slower due to the overhead setting up and tearing down the select operation. The current implementation for select is O(n) in the number of endpoints, so this works well for small numbers of tasks, but breaks down as things get bigger.

The other option is to slow down the sending end, using something I call a shared_chan. This is a send endpoint wrapped in an exclusive ARC. Now all the senders have to contend with each other, but the receive side is exactly as cheap as before. For cases where you have a lot of senders that send messages relatively infrequently, this will likely outperform the port_set approach, at least until select is faster.

Both of these are sufficient to run the msgsend benchmark that I talked about at the beginning of all of this. Here are the results, combined with the previous numbers.

Language Messages per second Comparison
Rust port_set 881,578 232.8%
Scala 378,740 100.0%
Rust port/chan (updated) 227,020 59.9%
Rust shared_chan 173,436 45.8%
Erlang (Bare) 78,670 20.8%
Erlang (OTP) 76,405 20.2%

The most obvious thing is that the port_set version is over twice as fast as Scala, the previous winner. I also re-ran the port/chan version for comparison, and it got a little bit faster. There has been quite a bit of churn in Rust recently, so it’s quite possible that these showed up here as better performance.

Writing the port_set version proved the most interesting to me. Relying on select ended up relaxing some of the ordering guarantees. Previously if we had Task A send a message to Task C and then send a message to Task B, and then have Task B wait to receive message to from Task A and then send a message to Task C, we could count on Task C seeing Task A’s message before seeing Task B’s message. With the port_set, this is no longer true, although we still preserve the order in messages sent by a single task. An easy way to work around this, however, was to rely on pipe’s closure reporting ability. The server could tell when a worker would no longer send any more messages because it would detect when the worker closed its end of the pipe.

I hinted in my last post that pipes in Rust have very good performance. This falls out of the fact that the protocol specifications provide very strong static guarantees about what sorts of things can happen at runtime. This allows, among other things, for message send/receive fastpath that requires only two atomic swaps.

Let’s start with the message ring benchmark. I posted results from this earlier. This benchmark spins up a bunch of tasks that arrange themselves in a while. Each task sends a message to their right-hand neighbor, and receives a message from the left-hand neighbor. This repeats for a while. At the end, we look at the total time taken divided by the number of messages. This gives us roughly the fastest we can send and receive a message, modulo some task spawning overhead. The existing port/chan system was able to send about 250,000 messages per second, or one message every 3.9 µs. Here are the results for pipes:

Sent 1000000 messages in 0.227634 seconds
  4.39301e+06 messages / second
  0.227634 µs / message

This is about 17x faster!

It would be a bit dishonest to stop here, however. I wrote this benchmark specifically to make any new implementation really shine. The question is whether faster message passing makes a difference on bigger programs.

To test this, I started by updating the Graph500 Parallel Breadth First Search benchmark. This code gets its parallelism from std::par::map, which in turn is built on core::future. Future has a very simple parallel protocol; it just spawns a task to compute something, which then sends a single message back to the spawner. Porting this was a relatively small change, yet it got measurable speedups. Here are the results.

Benchmark Port/chan time (s) Pipe time (s) Improvement (%)
Graph500 PBFS 0.914772 0.777784 17.6%

The Rust benchmark suite also includes several benchmarks from the Computer Language Benchmarks Game (i.e. the Programming Language Shootout). Some of these, such as k-nucleotide, use Rust’s parallelism features. I went ahead and ported this benchmark over to use pipes, and there are the results.

Benchmark Port/chan time (s) Pipe time (s) Improvement (%)
Shootout K-Nucleotide 4.335 3.125 38.7%

Not too shabby. I’ve been working on porting other benchmarks as well. Some are more difficult because they do not fit the 1:1 nature of pipes very well. In the case of the shootout-threadring benchmark, it actually got significantly slower when I moved to pipes. The thread ring benchmark seems to mostly be measuring the time to switch between tasks, as only one should be runnable at any given time. My hypothesis is that because message passing got faster, this test now hammers the scheduler synchronization code harder, leading to more slowdown due to contention. We’ll need more testing to know for sure. At any rate, scheduler improvements (such as work stealing, which Ben Blum will be working on) should improve this benchmark as well.

Other than that, I’ve been working on rewriting more Rust code to see how it works with pipes versus ports and chans. It has been particularly informative to try to transition parts of Servo over to using pipes.

Arduino Examples

Posted: March 7, 2012 in Arduino
Tags: ,

This semester I am assisting Will Byrd in teaching A290: Arduino Development. As part of this, I’ve decided to post some example Arduino code on Github. Here’s the link to the repository:

https://github.com/eholk/ArduinoExamples

In the coming days and weeks, I’ll try to post more detailed information about each of the examples.